Protein kinase C enables the regulatory circuit that connects membrane synthesis to ribosome synthesis in Saccharomyces cerevisiae.

نویسندگان

  • C R Nierras
  • J R Warner
چکیده

The balanced growth of a cell requires the integration of major systems such as DNA replication, membrane biosynthesis, and ribosome formation. An example of such integration is evident from our recent finding that, in Saccharomyces cerevisiae, any failure in the secretory pathway leads to severe repression of transcription of both rRNA and ribosomal protein genes. We have attempted to determine the regulatory circuit(s) that connects the secretory pathway with the transcription of ribosomal genes. Experiments show that repression does not occur through the circuit that responds to misfolded proteins in the endoplasmic reticulum, nor does it occur through circuits known to regulate ribosome synthesis, e.g. the stringent response, or the cAMP pathway. Rather, it appears to depend on a stress response at the plasma membrane that is transduced through protein kinase C (PKC). Deletion of PKC1 relieves the repression of both ribosomal protein and rRNA genes that occurs in response to a defect in the secretory pathway. We propose that failure of the secretory pathway prevents the synthesis of new plasma membrane. As protein synthesis continues, stress develops in the plasma membrane. This stress is monitored by Pkc1p, which initiates a signal transduction pathway that leads to repression of transcription of the rRNA and ribosomal protein genes. The importance of the transcription of the 137 ribosomal protein genes to the economy of the cell is apparent from the existence of at least three distinct pathways that can effect the repression of this set of genes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Purification of Saccharomyces cerevisiae eIF4E/eIF4G/Pab1p Complex with Capped mRNA

Protein synthesis is one of the most complex cellular processes, involving numerous translation components that interact in multiple sequential steps. The most complex stage in protein synthesis is the initiation process. The basal set of factors required for translation initiation has been determined, and biochemical, genetic, and structural studies are now beginning to reveal details of their...

متن کامل

Las1 interacts with Grc3 polynucleotide kinase and is required for ribosome synthesis in Saccharomyces cerevisiae

Ribosome biogenesis is a multi-step process that couples cell growth with cell proliferation. Although several large-scale analysis of pre-ribosomal particles have identified numerous trans-acting factors involved in this process, many proteins involved in pre-rRNA processing and ribosomal subunit maturation have yet to be identified. Las1 was originally identified in Saccharomyces cerevisiae a...

متن کامل

Inositol pyrophosphates regulate RNA polymerase I-mediated rRNA transcription in Saccharomyces cerevisiae

Ribosome biogenesis is an essential cellular process regulated by the metabolic state of a cell. We examined whether inositol pyrophosphates, energy-rich derivatives of inositol that act as metabolic messengers, play a role in ribosome synthesis in the budding yeast, Saccharomyces cerevisiae. Yeast strains lacking the inositol hexakisphosphate (IP6) kinase Kcs1, which is required for the synthe...

متن کامل

Green synthesis of silver nanoparticles: Another honor for the yeast model Saccharomyces cerevisiae

Background and Purpose: Microorganism-based synthesis of nanostructures has recently been noted as a green method for the sustainable development of nanotechnology. Nowadays, there have been numerous studies on the emerging resistant pathogenic bacteria and fungal isolates, the probable inability of bacteria and fungi to develop resistance against silver nanoparticles’ (SNPs) antibacte...

متن کامل

Mapping of the Saccharomyces cerevisiae Oxa1-mitochondrial ribosome interface and identification of MrpL40, a ribosomal protein in close proximity to Oxa1 and critical for oxidative phosphorylation complex assembly.

The Oxa1 protein plays a central role in facilitating the cotranslational insertion of the nascent polypeptide chains into the mitochondrial inner membrane. Mitochondrially encoded proteins are synthesized on matrix-localized ribosomes which are tethered to the inner membrane and in physical association with the Oxa1 protein. In the present study we used a chemical cross-linking approach to map...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 19  شماره 

صفحات  -

تاریخ انتشار 1999